代数学I pdf pdb 阿里云 极速 mobi caj kindle 下载

代数学I电子书下载地址
内容简介:
范德瓦尔登的《代数学》是现代数学的一部奠基之作,这部书不仅对提高数学家的学识修养有很大意义,对现代数学如扑拓学、泛函分析等以及一些其他科学领域也有重要影响。全书共分两卷,本书是第一卷,分成11章:前5章以最小的篇幅包括了为所有其余各章作准备的知识,即有关集合、群、环、域、向量空间和多项式的最基本的概念;其余各章主要讲述交换域的理论,包括Galois理论和实域。
目录
引言
第1章 数与集合
1.1 集合
1.2 映射,势
1.3 自然数序列
1.4 有限与可数集合
1.5 分类
第2章 群
2.1 群的概念
2.2 子群
2.3 群子集的运算,陪集
2.4 同构与自同构
2.5 同态,正规子群,商群
第3章 环与域
3.1 环
3.2 同态与同构
3.3 商的构成
3.4 多项式环
3.5 理想,同余类环
3.6 整除性,素理想
3.7 Euclid环与主理想环
3.8 因子分解
第4章 向量空间和张量空间
4.1 向量空间
4.2 维数不变性
4.3 对偶向量空间
4.4 体上的线性方程组
4.5 线性变换
4.6 张量
4.7 反对称双线性型与行列式
4.8 张量积,缩并与迹
第5章 多项式
5.1 微分法
5.2 多项式的零点
5.3 内插公式
5.4 因子分解
5.5 不可约性判定标准
5.6 因子分解在有限步下的完成
5.7 对称函数
5.8 两个多项式的结式
5.9 结式作为根的对称函数
5.10 有理函数的部分分式分解
第6章 域论
6.1 子体,素体
6.2 添加
6.3 单纯域扩张
6.4 域的有限扩张
6.5 域的代数扩张
6.6 单位根
6.7 Galois域(有限域)
6.8 可分与不可分扩张
6.9 完全域及不完全域
6.10 代数扩张的单纯性,本原元素定理
6.11 范数与迹
第7章 群论续
7.1 带算子的群
7.2 算子同构和算子同态
7.3 两个同构定理
7.4 正规群列与合成群列
7.5 pn阶群
7.6 直积
7.7 群的特征标
7.8 交错群的单纯性
7.9 可迁性与本原性
第8章 Galois理论
8.1 Galois群
8.2 Galois理论的基本定理
8.3 共轭的群、域与域的元素
8.4 分圆域
8.5 循环域与纯粹方程
8.6 用根式解方程
8.7 n次一般方程
8.8 二次、三次与四次方程
8.9 圆规与直尺作图
8.10 Galois群的计算,具有对称群的方程
8.11 正规基
第9章 集合的序与良序
9.1 有序集合
9.2 选择公理与Zorn引理
9.3 良序定理
9.4 超限归纳法
第10章 无限域扩张
10.1 代数封闭域
10.2 单纯超越扩域
10.3 代数相关性与无关性
10.4 超越次数
10.5 代数函数的微分法
第11章 实域
11.1 有序域
11.2 实数的定义
11.3 实函数的零点
11.4 复数域
11.5 实域的代数理论
11.6 关于形式实域的存在定理
11.7 平方和
索引
书籍目录:
《代数学I》目录:
引言
第1章 数与集合
1.1 集合
1.2 映射,势
1.3 自然数序列
1.4 有限与可数集合
1.5 分类
第2章 群
2.1 群的概念
2.2 子群
2.3 群子集的运算,陪集
2.4 同构与自同构
2.5 同态,正规子群,商群
第3章 环与域
3.1 环
3.2 同态与同构
3.3 商的构成
3.4 多项式环
3.5 理想,同余类环
3.6 整除性,素理想
3.7 Euclid环与主理想环
3.8 因子分解
第4章 向量空间和张量空间
4.1 向量空间
4.2 维数不变性
4.3 对偶向量空间
4.4 体上的线性方程组
4.5 线性变换
4.6 张量
4.7 反对称双线性型与行列式
4.8 张量积,缩并与迹
第5章 多项式
5.1 微分法
5.2 多项式的零点
5.3 内插公式
5.4 因子分解
5.5 不可约性判定标准
5.6 因子分解在有限步下的完成
5.7 对称函数
5.8 两个多项式的结式
5.9 结式作为根的对称函数
5.10 有理函数的部分分式分解
第6章 域论
6.1 子体,素体
6.2 添加
6.3 单纯域扩张
6.4 域的有限扩张
6.5 域的代数扩张
6.6 单位根
6.7 Galois域(有限域)
6.8 可分与不可分扩张
6.9 完全域及不完全域
6.10 代数扩张的单纯性,本原元素定理
6.11 范数与迹
第7章 群论续
7.1 带算子的群
7.2 算子同构和算子同态
7.3 两个同构定理
7.4 正规群列与合成群列
7.5 pn阶群
7.6 直积
7.7 群的特征标
7.8 交错群的单纯性
7.9 可迁性与本原性
第8章 Galois理论
8.1 Galois群
8.2 Galois理论的基本定理
8.3 共轭的群、域与域的元素
8.4 分圆域
8.5 循环域与纯粹方程
8.6 用根式解方程
8.7 n次一般方程
8.8 二次、三次与四次方程
8.9 圆规与直尺作图
8.10 Galois群的计算,具有对称群的方程
8.11 正规基
第9章 集合的序与良序
9.1 有序集合
9.2 选择公理与Zorn引理
9.3 良序定理
9.4 超限归纳法
第10章 无限域扩张
10.1 代数封闭域
10.2 单纯超越扩域
10.3 代数相关性与无关性
10.4 超越次数
10.5 代数函数的微分法
第11章 实域
11.1 有序域
11.2 实数的定义
11.3 实函数的零点
11.4 复数域
11.5 实域的代数理论
11.6 关于形式实域的存在定理
11.7 平方和
索引
作者介绍:
Bartel Leendert van der Waerden (February 2, 1903, Amsterdam, Netherlands – January 12, 1996, Zürich, Switzerland) was a Dutch mathematician.
Van der Waerden learned advanced mathematics at the University of Amsterdam and the University of Göttingen, from 1919 until 1926. He was much influenced by Emmy Noether at Göttingen. Amsterdam awarded him a Ph.D. for a thesis on algebraic geometry, supervised by Hendrick de Vries. Göttingen awarded him the habilitation in 1928.
In his 27th year, Van der Waerden published his Algebra, an influential two-volume treatise on abstract algebra, still cited, and perhaps the first treatise to treat the subject as a comprehensive whole. This work systematized an ample body of research by Emmy Noether, David Hilbert, Richard Dedekind, and Emil Artin. In the following year, 1931, he was appointed professor at the University of Leipzig.
The Third Reich made life difficult for Van der Waerden as a foreigner teaching in Germany, but he refused to give up his Dutch nationality. He filled the chair in mathematics at the University of Amsterdam, 1948–1951, then moved to the University of Zurich, where he spent the rest of his career, supervising more than 40 Ph.D. students.
Van der Waerden is mainly remembered for his work on abstract algebra. He also wrote on algebraic geometry, topology, number theory, geometry, combinatorics, analysis, probability and statistics, and quantum mechanics (he and Heisenberg had been colleagues at Leipzig). In his later years, he turned to the history of mathematics and science. His historical writings include Ontwakende wetenschap (1950), which was translated into English as Science Awakening (1954), Geometry and Algebra in Ancient Civilizations (1983), and A History of Algebra (1985).
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
范德瓦尔登的《代数学》是现代数学的一部奠基之作,这部书不仅对提高数学家的学识修养有很大意义,对现代数学如扑拓学、泛函分析等以及一些其他科学领域也有重要影响。全书共分两卷,本书是第一卷,分成11章:前5章以最小的篇幅包括了为所有其余各章作准备的知识,即有关集合、群、环、域、向量空间和多项式的最基本的概念;其余各章主要讲述交换域的理论,包括Galois理论和实域。
目录
引言
第1章 数与集合
1.1 集合
1.2 映射,势
1.3 自然数序列
1.4 有限与可数集合
1.5 分类
第2章 群
2.1 群的概念
2.2 子群
2.3 群子集的运算,陪集
2.4 同构与自同构
2.5 同态,正规子群,商群
第3章 环与域
3.1 环
3.2 同态与同构
3.3 商的构成
3.4 多项式环
3.5 理想,同余类环
3.6 整除性,素理想
3.7 Euclid环与主理想环
3.8 因子分解
第4章 向量空间和张量空间
4.1 向量空间
4.2 维数不变性
4.3 对偶向量空间
4.4 体上的线性方程组
4.5 线性变换
4.6 张量
4.7 反对称双线性型与行列式
4.8 张量积,缩并与迹
第5章 多项式
5.1 微分法
5.2 多项式的零点
5.3 内插公式
5.4 因子分解
5.5 不可约性判定标准
5.6 因子分解在有限步下的完成
5.7 对称函数
5.8 两个多项式的结式
5.9 结式作为根的对称函数
5.10 有理函数的部分分式分解
第6章 域论
6.1 子体,素体
6.2 添加
6.3 单纯域扩张
6.4 域的有限扩张
6.5 域的代数扩张
6.6 单位根
6.7 Galois域(有限域)
6.8 可分与不可分扩张
6.9 完全域及不完全域
6.10 代数扩张的单纯性,本原元素定理
6.11 范数与迹
第7章 群论续
7.1 带算子的群
7.2 算子同构和算子同态
7.3 两个同构定理
7.4 正规群列与合成群列
7.5 pn阶群
7.6 直积
7.7 群的特征标
7.8 交错群的单纯性
7.9 可迁性与本原性
第8章 Galois理论
8.1 Galois群
8.2 Galois理论的基本定理
8.3 共轭的群、域与域的元素
8.4 分圆域
8.5 循环域与纯粹方程
8.6 用根式解方程
8.7 n次一般方程
8.8 二次、三次与四次方程
8.9 圆规与直尺作图
8.10 Galois群的计算,具有对称群的方程
8.11 正规基
第9章 集合的序与良序
9.1 有序集合
9.2 选择公理与Zorn引理
9.3 良序定理
9.4 超限归纳法
第10章 无限域扩张
10.1 代数封闭域
10.2 单纯超越扩域
10.3 代数相关性与无关性
10.4 超越次数
10.5 代数函数的微分法
第11章 实域
11.1 有序域
11.2 实数的定义
11.3 实函数的零点
11.4 复数域
11.5 实域的代数理论
11.6 关于形式实域的存在定理
11.7 平方和
索引
网站评分
书籍多样性:7分
书籍信息完全性:7分
网站更新速度:9分
使用便利性:6分
书籍清晰度:6分
书籍格式兼容性:9分
是否包含广告:8分
加载速度:3分
安全性:7分
稳定性:6分
搜索功能:4分
下载便捷性:7分
下载点评
- 实惠(398+)
- epub(657+)
- 差评(521+)
- 一星好评(172+)
- 引人入胜(538+)
- 傻瓜式服务(517+)
- 字体合适(378+)
- 少量广告(73+)
- 二星好评(179+)
- 无漏页(370+)
- 无盗版(127+)
下载评价
- 网友 温***欣:
可以可以可以
- 网友 车***波:
很好,下载出来的内容没有乱码。
- 网友 谢***灵:
推荐,啥格式都有
- 网友 菱***兰:
特好。有好多书
- 网友 郗***兰:
网站体验不错
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
- 网友 孔***旋:
很好。顶一个希望越来越好,一直支持。
- 网友 冯***卉:
听说内置一千多万的书籍,不知道真假的
- 网友 訾***晴:
挺好的,书籍丰富
- 网友 师***怀:
好是好,要是能免费下就好了
- 网友 苍***如:
什么格式都有的呀。
- 网友 国***舒:
中评,付点钱这里能找到就找到了,找不到别的地方也不一定能找到
- 网友 焦***山:
不错。。。。。
- 网友 谭***然:
如果不要钱就好了
- 网友 詹***萍:
好评的,这是自己一直选择的下载书的网站
喜欢"代数学I"的人也看了
都柏林人 pdf pdb 阿里云 极速 mobi caj kindle 下载
风水理论研究 pdf pdb 阿里云 极速 mobi caj kindle 下载
心理学考研重难点手册基础备考(第8版) pdf pdb 阿里云 极速 mobi caj kindle 下载
秦始皇 战国七雄和大秦王朝 pdf pdb 阿里云 极速 mobi caj kindle 下载
全新正版图书 涉税服务相关法律赵俊峰中国商业出版社9787520815796 税法中国资格考试自学参考资料普通大众人天图书专营店 pdf pdb 阿里云 极速 mobi caj kindle 下载
极限基础(速写人物从入门到精通) pdf pdb 阿里云 极速 mobi caj kindle 下载
父母送给子女的13岁礼物 pdf pdb 阿里云 极速 mobi caj kindle 下载
机械工程材料及热处理(高职) pdf pdb 阿里云 极速 mobi caj kindle 下载
孙权传 pdf pdb 阿里云 极速 mobi caj kindle 下载
为什么现金比获利更重要? pdf pdb 阿里云 极速 mobi caj kindle 下载
- 美国交通图(中英文版) pdf pdb 阿里云 极速 mobi caj kindle 下载
- 华图2015全国专业技术人员职称英语等级考试教材配套试卷:全国职称英语等级考试(理工类)历年真题及专家命题预测试卷 C级专用(最新版)(附5年真题+6套模拟) pdf pdb 阿里云 极速 mobi caj kindle 下载
- 曲与画系列-元曲三百首 本书编委会 编 上海辞书出版社【正版书籍】 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 黄帝内经中医四大名著4册 金匱要略 温病条辨 伤寒杂病论 张仲景伤寒论 译释 中医养生书籍大全 中医 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 中国第四纪冰川与环境变化(精) (精装) pdf pdb 阿里云 极速 mobi caj kindle 下载
- 9787544623650 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 此生尽兴 pdf pdb 阿里云 极速 mobi caj kindle 下载
- KET完美通关――词汇天天练 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 新版公司实用管理制度大全(团购,请致电400-106-6666转6) pdf pdb 阿里云 极速 mobi caj kindle 下载
- 四书五经全解(线装) pdf pdb 阿里云 极速 mobi caj kindle 下载
书籍真实打分
故事情节:8分
人物塑造:3分
主题深度:6分
文字风格:6分
语言运用:4分
文笔流畅:5分
思想传递:5分
知识深度:5分
知识广度:6分
实用性:4分
章节划分:9分
结构布局:7分
新颖与独特:5分
情感共鸣:5分
引人入胜:7分
现实相关:5分
沉浸感:9分
事实准确性:7分
文化贡献:5分