生物信息学课程导引 pdf pdb 阿里云 极速 mobi caj kindle 下载

生物信息学课程导引电子书下载地址
内容简介:
本书根据清华大学承办的全国生物信息学暑期学校课程,高度概括地介绍了与生物信息学研究紧密相关的11门基础课程和15个前沿专题报告。全书分12章,包括: 生物信息学引论、生物信息学中的基础统计、计算基因组学专题、生物信息学中的高级统计、计算生物学算法基础、生物信息学中的多元统计、人类疾病关联研究方法与实例、生物信息学中的数据挖掘与知识发现、生物信息学应用工具、蛋白质结构与功能基础、中医药研究的计算系统生物学方法、生物信息学与计算系统生物学前沿等。本书不仅可以作为生物信息学初学者的入门读物,还可作为生物信息学领域专业研究人员高度概括而又不失系统性的参考书籍。
书籍目录:
1 BasicsforBioinfbrmatics.
Xuegong Zhang,Xueya Zhou,and Xiaowo Wang
1.1 WhatIs l3;ioinformatics
1.2 SomeBasicBiology
1.2.1 Scale andTime.
1.2.2 Cells.
1.2.3 DNA and Chromosome
1.2.4 TheCen~a1Dogma.
1.2.5 GenesandtheGenome.一
1.2.6 Measurements Along the Central Dogma
1.2.7 DNA Sequencing一
1.2.8 Transcriptomics and DNA Microarrays
1.2.9 Proteomics and Mass Spectrometry.
1.2.10 ChIP-Chip andChIP.Seq
1.3 ExampleTopicsofBioinformatics
1.3.1 Examples of Algorithmatic Topics
1.3.2 ExamplesofStatisticalTopics.
1.3.3 Machine Learning and Pattern
RecognitionExamples
1.3.4 Basic Principles ofGenetics.
Re:fe:rences
2 Basic StatisticsforBioinformatics.
Yuanlie Lin and Rui Jiang
2.1 Introduction.
2.2 FoundationsofStatistics
2.2.1 Probabilities
2.2.2 RandomVariables
2.2.3 Multiple Random Variables
2.2.4 Distributions.
2.2.5 random sampling.
2.2.6 suf.cientstatistics
2.3 point estimation
2.3.1 method of moments.
2.3.2 maximum likelihoodestimators
2.3.3 bayes estimators
2.3.4 mean squared error.
2.4 hypothesistesting
2.4.1 likelihood ratio tests
2.4.2 errorprobabilitiesandthepowerfunction
2.4.3 p-values
2.4.4 some widely used tests
2.5 intervalestimation
2.6 analysis of variance
2.6.1 one-way analysis of variance.
2.6.2 two-wayanalysisofvariance.
2.7 regression models
2.7.1 simple linear regression.
2.7.2 logistic regression
2.8 statisticalcomputingenvironments.
2.8.1 downloadingand installation
2.8.2 storage, input, and outputof data.
2.8.3 distributions.
2.8.4 hypothesis testing
2.8.5 anova and linear model
references
3 topics in computational genomics 69 michael q. zhang and andrew d. smith
3.1 overview:genomeinformatics
3.2 finding protein-codinggenes.
3.2.1 how to identifya coding exon
3.2.2 how to identifya gene with multiple exons
3.3 identifyingpromoters.
3.4 genomic arraysand acgh/cnp analysis
3.5 introduction on computational analysis of transcriptionalgenomicsdata
3.6 modelingregulatory elements
3.6.1 word-based representations
3.6.2 thematrix-basedrepresentation
3.6.3 other representations.
3.7 predicting transcriptionfactor binding sites.
3.7.1 the multinomial model for describing sequences
3.7.2 scoring matrices and searching sequences
3.7.3 algorithmic techniques for identifying high-scoringsites
3.7.4 measuring statistical signi.cance of matches
3.8 modelingmotif enrichmentin sequences
3.8.1 motif enrichmentbased on likelihoodmodels.
3.8.2 relative enrichment between two sequence sets
3.9 phylogeneticconservationof regulatoryelements
3.9.1 three strategies for identifying conserved binding sites
3.9.2 considerationswhen using phylogeneticfootprinting
3.10 motif discovery.
3.10.1 word-basedandenumerativemethods
3.10.2 general statistical algorithms applied to motif discovery
3.10.3 expectationmaximization
3.10.4 gibbs sampling
references
4 statistical methods in bioinformatics 101 jun s. liu and bo jiang
4.1 introduction
4.2 basics of statistical modeling and bayesian inference.
4.2.1 bayesian method with examples.
4.2.2 dynamic programmingand hidden markovmodel
4.2.3 metropolis-hastingsalgorithm and gibbs sampling
4.3 gene expressionand microarrayanalysis
4.3.1 low-level processing and differential expression identi.cation
4.3.2 unsupervised learning
4.3.3 dimensionreductiontechniques
4.3.4 supervised learning
4.4 sequencealignment
4.4.1 pair-wise sequence analysis.
4.4.2 multiple sequence alignment
4.5 sequence pattern discovery
4.5.1 basic models and approaches
4.5.2 gibbsmotifsampler
4.5.3 phylogenetic footprinting method and the identi.cation of cis-regulatorymodules.
4.6 combining sequence and expression information for analyzing transcriptionregulation
4.6.1 motifdiscoveryinchip-arrayexperiment.
4.6.2 regression analysis of transcriptionregulation
4.6.3 regulatoryroleofhistonemodi.cation
4.7 protein structure and proteomics
4.7.1 protein structure prediction
4.7.2 protein chip data analysis.
references
5 algorithms in computational biology . 151 tao jiang and jianxing feng
5.1 introduction
5.2 dynamic programmingand sequence alignment
5.2.1 the paradigm of dynamic programming
5.2.2 sequence alignment
5.3 greedy algorithmsfor genome rearrangement
5.3.1 genome rearrangements
5.3.2 breakpoint graph, greedy algorithm and approximationalgorithm 159 references
6 multivariate statistical methods in bioinformatics research . 163 lingsongzhang and xihong lin
6.1 introduction
6.2 multivariate normal distribution
6.2.1 de.nition and notation
6.2.2 properties of the multivariate normal distribution
6.2.3 bivariate normal distribution
6.2.4 wishart distribution.
6.2.5 sample mean and covariance
6.3 one-sampleand two-sample multivariate hypothesis tests
6.3.1 one-sample t test for a univariate outcome
6.3.2 hotelling's t2 test for the multivariate outcome
6.3.3 properties of hotelling'st2 test.
6.3.4 paired multivariate hotelling's t2 test
6.3.5 examples
6.3.6 two-samplehotelling's t2 test
6.4 principalcomponentanalysis.
6.4.1 de.nition of principal components
6.4.2 computing principalcomponents
6.4.3 variance decomposition
6.4.4 pcawithacorrelationmatrix.
6.4.5 geometricinterpretation
6.4.6 choosing the numberof principal components
6.4.7 diabetes microarraydata.
6.5 factor analysis
6.5.1 orthogonalfactor model
6.5.2 estimating the parameters
6.5.3 an example
6.6 linear discriminant analysis
6.6.1 two-grouplinear discriminant analysis.
6.6.2 an example
6.7 classi.cation methods
6.7.1 introductionof classi.cation methods
6.7.2 k-nearestneighbormethod
6.7.3 density-basedclassi.cationdecisionrule.
6.7.4 quadraticdiscriminantanalysis.
6.7.5 logistic regression
6.7.6 supportvector machine
6.8 variableselection.
6.8.1 linear regression model
6.8.2 motivation for variable selection
6.8.3 traditionalvariableselectionmethods
6.8.4 regularization and variable selection
6.8.5 summary
references
7 association analysis for human diseases: methods and examples . 233 jurg ott and qingrunzhang
7.1 whydoweneedstatistics.
7.2 basic concepts in population and quantitative genetics.
7.3 genetic linkageanalysis
7.4 geneticcase-controlassociationanalysis.
7.4.1 basic steps in an association study
7.4.2 multiple testing corrections
7.4.3 multi-locusapproaches
7.5 discussion.
references
8 data mining and knowledge discovery methods with case examples
s. bandyopadphyayand u. maulik
8.1 introduction
8.2 different tasks in data mining
8.2.1 classi.cation
8.2.2 clustering
8.2.3 discoveringassociations.
8.2.4 issues and challengesin data mining
8.3 some commontools and techniques.
8.3.1 arti.cial neural networks
8.3.2 fuzzy sets and fuzzy logic
8.3.3 genetic algorithms
8.4 case examples
8.4.1 pixelclassi.cation
8.4.2 clustering of satellite images
8.5 discussionandconclusions
references
9 applied bioinformatics tools 271 jingchu luo
9.1 introduction
9.1.1 welcome.
9.1.2 about this web site
9.1.3 outline
9.1.4 lectures
9.1.5 exercises.
9.2 entrez
9.2.1 pubmed query
9.2.2 entrez query
9.2.3 my ncbi
9.3 expasy
9.3.1 swiss-prot query
9.3.2 explore the swiss-prot entry hba human.
9.3.3 database query with the ebi srs
9.4 sequencealignment
9.4.1 pairwise sequence alignment
9.4.2 multiple sequence alignment
9.4.3 blast
9.5 dna sequence analysis
9.5.1 gene structure analysis and prediction
9.5.2 sequencecomposition
9.5.3 secondarystructure.
9.6 protein sequence analysis
9.6.1 primary structure
9.6.2 secondarystructure.
9.6.3 transmembranehelices
9.6.4 helical wheel
9.7 motif search
9.7.1 smart search
9.7.2 memesearch.
9.7.3 hmm search
9.7.4 sequence logo
9.8 phylogeny
9.8.1 protein
9.8.2 dna
9.9 projects
9.9.1 sequence, structure, and function analysis of the bar-headed goose hemoglobin.
9.9.2 exercises.
9.10 literature
9.10.1 courses and tutorials
9.10.2 scienti.c stories
9.10.3 free journalsand books
9.11 bioinformaticsdatabases
9.11.1 list of databases
9.11.2 database query systems
9.11.3 genome databases
9.11.4 sequencedatabases.
9.11.5 proteindomain,family,andfunctiondatabases.
9.11.6 structure databases
9.12 bioinformaticstools
9.12.1 list of bioinformatics tools at international bioinformaticscenters
9.12.2 web-basedbioinformaticsplatforms
9.12.3 bioinformatics packages to be downloaded and installed locally
9.13 sequence analysis
9.13.1 dotplot.
9.13.2 pairwise sequence alignment
9.13.3 multiple sequence alignment
9.13.4 motif finding
9.13.5 gene identi.cation
9.13.6 sequence logo
9.13.7 rna secondary structure prediction
9.14 database search.
9.14.1 blast search
9.14.2 other database search
9.15 molecular modeling
9.15.1 visualizationandmodelingtools
9.15.2 protein modelingweb servers
9.16 phylogeneticanalysisandtreeconstruction.
9.16.1 list of phylogenyprograms
9.16.2 online phylogenyservers
9.16.3 phylogenyprograms
9.16.4 displayofphylogenetictrees
references
10 foundations for the study of structure and function of proteins 303 zhirongsun
10.1 introduction
10.1.1 importanceof protein.
10.1.2 amino acids, peptides, and proteins.
10.1.3 some noticeable problems
10.2 basic concept of protein structure
10.2.1 different levels of protein structures
10.2.2 acting force to sustain and stabilize the high-dimensionalstructure of protein
10.3 fundamentalof macromoleculesstructuresand functions
10.3.1 differentlevelsofproteinstructure.
10.3.2 primary structure
10.3.3 secondarystructure.
10.3.4 supersecondarystructure.
10.3.5 folds
10.3.6 summary
10.4 basis of protein structure and function prediction
10.4.1 overview
10.4.2 the signi.cance of protein structure prediction
10.4.3 the field of machine learning.
10.4.4 homological protein structure prediction method
10.4.5 abinitiopredictionmethod
reference.
11 computational systems biology approaches for deciphering traditional chinese medicine 337 shao li and le lu
11.1 introduction
11.2 disease-related network.
11.2.1 fromagenelisttopathwayandnetwork
11.2.2 construction of disease-related network.
11.2.3 biological network modularity and phenotypenetwork.
11.3 tcm zheng-related network
11.3.1 "zheng" in tcm
11.3.2 acsb-basedcasestudyfortcmzheng
11.4 network-based study for tcm "fu fang"
11.4.1 systems biology in drug discovery
11.4.2 network-based drug design
11.4.3 progresses in herbal medicine
11.4.4 tcm fu fang (herbal formula)
11.4.5 a network-based case study for tcm fu fang
references
12 advanced topics in bioinformatics and computational biology . 369 bailin hao, chunting zhang, yixue li, hao li, liping wei, minoru kanehisa, luhualai, runsheng chen, nikolaus rajewsky, michael q. zhang, jingdonghan, rui jiang, xuegong zhang, and yanda li
12.1 prokaryotephylogenymeets taxonomy
12.2 z-curve method and its applications in analyzing eukaryoticand prokaryotic genomes
12.3 insights into the coupling of duplication events and macroevolution from an age pro.le of transmembranegene families
12.4 evolution of combinatorial transcriptional circuits inthefungallineage.
12.5 can a non-synonymous single-nucleotide polymorphism (nssnp) affect protein function analysis from sequence, structure, and enzymatic assay
12.6 bioinformatics methods to integrate genomic andchemicalinformation
12.7 from structure-based to system-based drug design
12.8 progressin the study of noncodingrnas in c. elegans
12.9 identifyingmicrornas and their targets
12.10 topics in computationalepigenomics
12.11 understanding biological functions through molecular networks
12.12 identi.cationof network motifs in random networks
12.13 examples of pattern recognition applicationsin bioinformatics.
12.14 considerationsin bioinformatics
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
暂无其它内容!
网站评分
书籍多样性:8分
书籍信息完全性:6分
网站更新速度:4分
使用便利性:9分
书籍清晰度:8分
书籍格式兼容性:4分
是否包含广告:6分
加载速度:7分
安全性:8分
稳定性:5分
搜索功能:4分
下载便捷性:8分
下载点评
- 方便(325+)
- 图书多(493+)
- 收费(656+)
- 超值(443+)
- 简单(342+)
- 藏书馆(483+)
- 已买(118+)
- 服务好(542+)
下载评价
- 网友 林***艳:
很好,能找到很多平常找不到的书。
- 网友 寇***音:
好,真的挺使用的!
- 网友 融***华:
下载速度还可以
- 网友 曹***雯:
为什么许多书都找不到?
- 网友 曾***文:
五星好评哦
- 网友 印***文:
我很喜欢这种风格样式。
- 网友 詹***萍:
好评的,这是自己一直选择的下载书的网站
- 网友 堵***洁:
好用,支持
- 网友 寿***芳:
可以在线转化哦
- 网友 孙***美:
加油!支持一下!不错,好用。大家可以去试一下哦
喜欢"生物信息学课程导引"的人也看了
NC102 NC297 NC71 NC196 KRK26烤烟品种特性及配套生产技术 pdf pdb 阿里云 极速 mobi caj kindle 下载
美味的科学 pdf pdb 阿里云 极速 mobi caj kindle 下载
马勒别墅 pdf pdb 阿里云 极速 mobi caj kindle 下载
国际大奖绘本 爱之阅读馆 绘本阅读 厚脸皮的乌鸦 pdf pdb 阿里云 极速 mobi caj kindle 下载
系统成本工程 pdf pdb 阿里云 极速 mobi caj kindle 下载
中公版2013辽宁公务员专项教材-言语理解与表达考点精讲与高分题库 pdf pdb 阿里云 极速 mobi caj kindle 下载
信息化工程监理 pdf pdb 阿里云 极速 mobi caj kindle 下载
宇宙的奥秘:现代天体物理学(给孩子的科普百科,零基础入门天文学!铜版全彩印刷,精选170+NASA、欧空局珍藏图片) pdf pdb 阿里云 极速 mobi caj kindle 下载
KidsBox剑桥国际少儿英语 学生包6 pdf pdb 阿里云 极速 mobi caj kindle 下载
The Cambridge Introduction to Joseph Conrad pdf pdb 阿里云 极速 mobi caj kindle 下载
- 基于ISO26262的汽车电子功能安全:方法与应用 郭建 王高翃 赵涌鑫 蒲戈光 机械工业出版社 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 贝叶斯数据分析 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 【正版新书】八年级课本里的作家回延安 八年级上下册阅读课外书 初二上册课外阅读经典书目拓展经典儿童文学 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 幽默与笑话儿童彩图版杂志订阅2024年7月起订 1年共12期 5-15岁少儿阅读书籍期刊杂志 全年订阅 杂志铺 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 朱熹晚年礼学思想研究 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 云阅读:“1+1”快乐童梦馆 故事大王 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 现代网球运动教学与训练新论 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 地狱变(新版) pdf pdb 阿里云 极速 mobi caj kindle 下载
- 火烧河楼(精) pdf pdb 阿里云 极速 mobi caj kindle 下载
- 宏章出版·江西省公务员录用考试教材 pdf pdb 阿里云 极速 mobi caj kindle 下载
书籍真实打分
故事情节:9分
人物塑造:9分
主题深度:6分
文字风格:9分
语言运用:5分
文笔流畅:5分
思想传递:4分
知识深度:3分
知识广度:5分
实用性:7分
章节划分:4分
结构布局:7分
新颖与独特:6分
情感共鸣:9分
引人入胜:9分
现实相关:5分
沉浸感:9分
事实准确性:5分
文化贡献:3分