金融学观点的随机微积分基础ELEMENTARY STOCHASTIC CALCULUS, WITH FINANCE IN VIEW pdf pdb 阿里云 极速 mobi caj kindle 下载

金融学观点的随机微积分基础ELEMENTARY STOCHASTIC CALCULUS, WITH FINANCE IN VIEW精美图片
》金融学观点的随机微积分基础ELEMENTARY STOCHASTIC CALCULUS, WITH FINANCE IN VIEW电子书籍版权问题 请点击这里查看《

金融学观点的随机微积分基础ELEMENTARY STOCHASTIC CALCULUS, WITH FINANCE IN VIEW书籍详细信息

  • ISBN:9789810235437
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:1998-12
  • 页数:212
  • 价格:239.40
  • 纸张:铜版纸
  • 装帧:精装
  • 开本:暂无开本
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看

内容简介:

This book is suitable for the reader without a deep mathematical background. It gives an elementary introduction to that area of probability theory, without burdening the reader with a great deal of measure theory. Applications are taken from stochastic finance.In particular, the Black-Scholes option pricing formula is derived. Thebook can serve as a text for a course on stochastic calculus for non-mathematicians or as elementary reading material for anyone who wants

to learn about It6 calculus and/or stochastic finance.


书籍目录:

Reader Guidelines

1 Preliminaries

1.1 Basic Concepts from Probability Theory

1.1.1 Random Variables

1.1.2 Random Vectors

1.1.3 Independence and Dependence

1.2 Stochastic Processes

1.3 Brownian Motion

1.3.1 Defining Properties

1.3.2 Processes Derived from Brownian Motion

1.3.3 Simulation of Brownian Sample Paths

1.4 Conditional Expectation

1.4.1 Conditional Expectation under Discrete Condition .

1.4.2 About a-Fields

1.4.3 The General Conditional Expectation

1.4.4 Rules for the Calculation of Conditional Expectations

1.4.5 The Projection Property of Conditional Expectations

1.5 Martingales

1.5.1 Defining Properties

1.5.2 Examples

1.5.3 Tile Interpretation of a Martingale as a FaiI: Game

2 The Stochastic Integral

2.1 The Riemann and Riemann Stieltjes Integrals

2.1.1 The Ordinary Riemann Integral

2.1.2 The Riemann Stieltjes Integral

2.2 The It6 Integral

2.2.1 A Motivating Example

2.2.2 The It6 Stochastic Integral for Simple Processes

2.2.3 The General It6 Stochastic Integral

2.3 The It6 Lemma

2.3.1 The Classical Chain Rule of Differentiation

2.3.2 A Simple Version of the It6 Lemma

2.3.3 Extended Versions of the It6 Lemma

2.4 The Stratonovich and Other Integrals

3 Stochastic Differential Equations

3.1 Deterministic Differential Equations

3.2 It6 Stochastic Differential Equations

3.2.1 What is a Stochastic Differential Equation?

3.2.2 Solving It6 Stochastic Differential Equations by the It6 Lemma

3.2.3 Solving It6 Differential Equations via Stratonovich Cal-culus

3.3 The General Linear Differential Equation

3.3.1 Linear Equations with Additive Noise

3.3.2 Homogeneous Equations with Multiplicative Noise

3.3.3 The General Case

3.3.4 The Expectation and Variance Functions of the Solution

3.4 Numerical Solution

3.4.1 The Euler Approximation

3.4.2 The Milstein Approximation

4 Applications of Stochastic Calculus in Finance

4.1 The Black-Scholes Option Pricing Formula

4.1.1 A Short Excursion into Finance

4.1.2 What is an Option?

4.1.3 A Mathematical Formulation of the Option Pricing Problem

4.1.4 The Black and Scholes Formula

4.2 A Useful Technique: Change of Measure

4.2.1 What is a Change of tile Underlying Measure?

4.2.2 An Interpretation of the Black-Scholes Formula by Chan-ge of Measure

Appendix

A1 Modes of Convergence

A2 Inequalities

……

Bibliography

Index

List of Abbreviations and Symbols


作者介绍:

暂无相关内容,正在全力查找中


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

暂无相关书籍摘录,正在全力查找中!



原文赏析:

暂无原文赏析,正在全力查找中!


其它内容:

书籍介绍

Modelling with the Ito integral or stochastic differential equations has become increasingly important in various applied fields, including physics, biology, chemistry and finance. However, stochastic calculus is based on a deep mathematical theory. This text should be suitable for the reader without a deep mathematical background. It seeks to provide an elementary introduction to that area of probability theory, without burdening the reader with a great deal of measure theory. Applications are taken from stochastic finance. In particular, the Black-Scholes option pricing formula is derived.


书籍真实打分

  • 故事情节:4分

  • 人物塑造:3分

  • 主题深度:4分

  • 文字风格:8分

  • 语言运用:9分

  • 文笔流畅:9分

  • 思想传递:7分

  • 知识深度:7分

  • 知识广度:3分

  • 实用性:7分

  • 章节划分:5分

  • 结构布局:9分

  • 新颖与独特:3分

  • 情感共鸣:9分

  • 引人入胜:8分

  • 现实相关:7分

  • 沉浸感:3分

  • 事实准确性:4分

  • 文化贡献:6分


网站评分

  • 书籍多样性:9分

  • 书籍信息完全性:8分

  • 网站更新速度:8分

  • 使用便利性:3分

  • 书籍清晰度:8分

  • 书籍格式兼容性:4分

  • 是否包含广告:6分

  • 加载速度:9分

  • 安全性:5分

  • 稳定性:5分

  • 搜索功能:5分

  • 下载便捷性:5分


下载点评

  • 差评少(631+)
  • 种类多(66+)
  • 情节曲折(269+)
  • 图文清晰(340+)
  • 五星好评(66+)
  • 排版满分(251+)
  • 藏书馆(516+)

下载评价

  • 网友 石***烟:

    还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的

  • 网友 田***珊:

    可以就是有些书搜不到

  • 网友 瞿***香:

    非常好就是加载有点儿慢。

  • 网友 陈***秋:

    不错,图文清晰,无错版,可以入手。

  • 网友 戈***玉:

    特别棒

  • 网友 仰***兰:

    喜欢!很棒!!超级推荐!

  • 网友 印***文:

    我很喜欢这种风格样式。

  • 网友 潘***丽:

    这里能在线转化,直接选择一款就可以了,用他这个转很方便的

  • 网友 居***南:

    请问,能在线转换格式吗?

  • 网友 益***琴:

    好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。

  • 网友 邱***洋:

    不错,支持的格式很多

  • 网友 孙***夏:

    中评,比上不足比下有余

  • 网友 习***蓉:

    品相完美


随机推荐