Adaptive approximation based control基于近似自适应的控制:神经系统的、模糊的与传统的自适应方法统一 pdf pdb 阿里云 极速 mobi caj kindle 下载

Adaptive approximation based control基于近似自适应的控制:神经系统的、模糊的与传统的自适应方法统一电子书下载地址
- 文件名
- [epub 下载] Adaptive approximation based control基于近似自适应的控制:神经系统的、模糊的与传统的自适应方法统一 epub格式电子书
- [azw3 下载] Adaptive approximation based control基于近似自适应的控制:神经系统的、模糊的与传统的自适应方法统一 azw3格式电子书
- [pdf 下载] Adaptive approximation based control基于近似自适应的控制:神经系统的、模糊的与传统的自适应方法统一 pdf格式电子书
- [txt 下载] Adaptive approximation based control基于近似自适应的控制:神经系统的、模糊的与传统的自适应方法统一 txt格式电子书
- [mobi 下载] Adaptive approximation based control基于近似自适应的控制:神经系统的、模糊的与传统的自适应方法统一 mobi格式电子书
- [word 下载] Adaptive approximation based control基于近似自适应的控制:神经系统的、模糊的与传统的自适应方法统一 word格式电子书
- [kindle 下载] Adaptive approximation based control基于近似自适应的控制:神经系统的、模糊的与传统的自适应方法统一 kindle格式电子书
内容简介:
A highly accessible and unified approach to the design and analysis of intelligent control systems
Adaptive Approximation Based Control is a tool every control designer should have in his or her control toolbox.
Mixing approximation theory, parameter estimation, and feedback control, this book presents a unified approach designed to enable readers to apply adaptive approximation based control to existing systems, and, more importantly, to gain enough intuition and understanding to manipulate and combine it with other control tools for applications that have not been encountered before.
The authors provide readers with a thought-provoking framework for rigorously considering such questions as:
What properties should the function approximator have?
Are certain families of approximators superior to others?
Can the stability and the convergence of the approximator parameters be guaranteed?
Can control systems be designed to be robust in the face of noise, disturbances, and unmodeled effects?
Can this approach handle significant changes in the dynamics due to such disruptions as system failure?
What types of nonlinear dynamic systems are amenable to this approach?
What are the limitations of adaptive approximation based control?
Combining theoretical formulation and design techniques with extensive use of simulation examples, this book is a stimulating text for researchers and graduate students and a valuable resource for practicing engineers.
作者简介:
JAY A. FARRELL, PhD, is Professor and former chair of the Department of Electrical Engineering at the University of California at Riverside. He was also principal investigator on projects involving intelligent and learning control systems for autonomous vehiclesat the Charles Stark Draper Laboratory, where he was awarded the Engineering Vice President's Best Technical Publication Award. He is the author of one other book and over 130 articles for technical publications.
书籍目录:
Preface
1 INTRODUCTION
1.1 Systems and Control Terminology
1.2 Nonlinear Systems
1.3 Feedback Control Approaches
1.3.1 Linear Design
1.3.2 Adaptive Linear Design
1.3.3 Nonlinear Design
1.3.4 Adaptive Approximation Based Design
1.3.5 Example Summary
1.4 Components of Approximation Based Control
1.4.1 Control Architecture
1.4.2 Function Approximator
1.4.3 Stable Training Algorithm
1.5 Discussion and Philosophical Comments
1.6 Exercises and Design Problems
2 APPROXIMATION THEORY
2.1 Motivating Example
2.2 Interpolation
2.3 Function Approximation
2.3.1 Off-line (Batch) Function Approximation
2.3.2 Adaptive Function Approximation
2.4 Approximator Properties
2.4.1 Parameter (Non)Linearity
2.4.2 Classical Approximation Results
2.4.3 Network Approximators
2.4.4 Nodal Processors
2.4.5 Universal Approximator
2.4.6 Best Approximator Property
2.4.7 Generalization
2.4.8 Extent of Influence Function Support
2.4.9 Approximator Transparency
2.4.10 Haar Conditions
2.4.11 Multivariable Approximation by Tensor Products
2.5 Summary
2.6 Exercises and Design Problems
3 APPROXIMATION STRUCTURES
3.1 Model Types
3.1.1 Physically Based Models
3.1.2 Structure (Model) Free Approximation
3.1.3 Function Approximation Structures
3.2 Polynomials
3.2.1 Description
3.2.2 Properties
3.3 Splines
3.3.1 Description
3.3.2 Properties
3.4 Radial Basis Functions
3.4.1 Description
3.4.2 Properties
3.5 Cerebellar Model Articulation Controller
3.5.1 Description
3.5.2 Properties
3.6 Multilayer Perceptron
3.6.1 Description
3.6.2 Properties
3.7 Fuzzy Approximation
3.7.1 Description
3.7.2 Takagi-Sugeno Fuzzy Systems
3.7.3 Properties
3.8 Wavelets
3.8.1 Multiresolution Analysis (MRA)
3.8.2 MRA Properties
3.9 Further Reading
3.10 Exercises and Design Problems
4 PARAMETER ESTIMATION METHODS
4.1 Formulation for Adaptive Approximation
4.1.1 Illustrative Example
4.1.2 Motivating Simulation Examples
4.1.3 Problem Statement
4.1.4 Discussion of Issues in Parametric Estimation
4.2 Derivation of Parametric Models
4.2.1 Problem Formulation for Full-State Measurement
4.2.2 Filtering Techniques
4.2.3 SPR Filtering
4.2.4 Linearly Parameterized Approximators
4.2.5 Parametric Models in State Space Form
4.2.6 Parametric Models of Discrete-Time Systems
4.2.7 Parametric Models of Input-Output Systems
4.3 Design of On-Line Learning Schemes
4.3.1 Error Filtering On-Line Learning (EFOL) Scheme
4.3.2 Regressor Filtering On-Line Learning (RFOL) Scheme
4.4 Continuous-Time Parameter Estimation
4.4.1 Lyapunov Based Algorithms
4.4.2 Optimization Methods
4.4.3 Summary
4.5 On-Line Learning: Analysis
4.5.1 Analysis of LIP EFOL scheme with Lyapunov Synthesis Method
4.5.2 Analysis of LIP RFOL scheme with the Gradient Algorithm
4.5.3 Analysis of LIP RFOL scheme with RLS Algorithm
4.5.4 Persistency of Excitation and Parameter Convergence
4.6 Robust Learning Algorithms
4.6.1 Projection modification
4.6.2 σ-modification
4.6.3 &epsis;-modification
4.6.4 Dead-zone modification
4.6.5 Discussion and Comparison
4.7 Concluding Summary
4.8 Exercises and Design Problems
5 NONLINEAR CONTROL ARCHITECTURES
5.1 Small-Signal Linearization
5.1.1 Linearizing Around an Equilibrium Point
5.1.2 Linearizing Around a Trajectory
5.1.3 Gain Scheduling
5.2 Feedback Linearization
5.2.1 Scalar Input-State Linearization
5.2.2 Higher-Order Input-State Linearization
5.2.3 Coordinate Transformations and Diffeomorphisms
5.2.4 Input-Output Feedback Linearization
5.3 Backstepping
5.3.1 Second order system
5.3.2 Higher Order Systems
5.3.3 Command Filtering Formulation
5.4 Robust Nonlinear Control Design Methods
5.4.1 Bounding Control
5.4.2 Sliding Mode Control
5.4.3 Lyapunov Redesign Method
5.4.4 Nonlinear Damping
5.4.5 Adaptive Bounding Control
5.5 Adaptive Nonlinear Control
5.6 Concluding Summary
5.7 Exercises and Design Problems
6 ADAPTIVE APPROXIMATION: MOTIVATION AND ISSUES
6.1 Perspective for Adaptive Approximation Based Control
6.2 Stabilization of a Scalar System
6.2.1 Feedback Linearization
6.2.2 Small-Signal Linearization
6.2.3 Unknown Nonlinearity with Known Bounds
6.2.4 Adaptive Bounding Methods
6.2.5 Approximating the Unknown Nonlinearity
6.2.6 Combining Approximation with Bounding Methods
6.2.7 Combining Approximation with Adaptive Bounding Methods
6.2.8 Summary
6.3 Adaptive Approximation Based Tracking
6.3.1 Feedback Linearization
6.3.2 Tracking via Small-Signal Linearization
6.3.3 Unknown Nonlinearities with Known Bounds
6.3.4 Adaptive Bounding Design
6.3.5 Adaptive Approximation of the Unknown Nonlinearities
6.3.6 Robust Adaptive Approximation
6.3.7 Combining Adaptive Approximation with Adaptive Bounding
6.3.8 Some Adaptive Approximation Issues
6.4 Nonlinear Parameterized Adaptive Approximation
6.5 Concluding Summary
6.6 Exercises and Design Problems
7 ADAPTIVE APPROXIMATION BASED CONTROL: GENERAL THEORY
7.1 Problem Formulation
7.1.1 Trajectory Tracking
7.1.2 System
7.1.3 Approximator
7.1.4 Control Design
7.2 Approximation Based Feedback Linearization
7.2.1 Scalar System
7.2.2 Input-State
7.2.3 Input-Output
7.2.4 Control Design Outside the Approximation Region D
7.3 Approximation Based Backstepping
7.3.1 Second Order Systems
7.3.2 Higher Order Systems
7.3.3 Command Filtering Approach
7.3.4 Robustness Considerations
7.4 Concluding Summary
7.5 Exercises and Design Problems
8 ADAPTIVE APPROXIMATION BASED CONTROL FOR FIXED-WING AIRCRAFT
8.1 Aircraft Model Introduction
8.1.1 Aircraft Dynamics
8.1.2 Non-dimensional Coefficients
8.2 Angular Rate Control for Piloted Vehicles
8.2.1 Model Representation
8.2.2 Baseline Controller
8.2.3 Approximation Based Controller
8.2.4 Simulation Results
8.3 Full Control for Autonomous Aircraft
8.3.1 Airspeed and Flight Path Angle Control
8.3.2 Wind-axes Angle Control
8.3.3 Body Axis Angular Rate Control
8.3.4 Control Law and Stability Properties
8.3.5 Approximator Definition
8.3.6 Simulation Analysis
8.4 Conclusions
8.5 Aircraft Notation
Appendix A: Systems and Stability Concepts
A.1 Systems Concepts
A.2 Stability Concepts
A.2.1 Stability Definitions
A.2.2 Stability Analysis Tools
A.3 General Results
A.4 Prefiltering
A.5 Other Useful Results
A.5.1 Smooth Approximation of the Signum function
A.6 Problems
Appendix B: Recommended Implementation and Debugging Approach
References
Index
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
A highly accessible and unified approach to the design and analysis of intelligent control systems
Adaptive Approximation Based Control is a tool every control designer should have in his or her control toolbox.
Mixing approximation theory, parameter estimation, and feedback control, this book presents a unified approach designed to enable readers to apply adaptive approximation based control to existing systems, and, more importantly, to gain enough intuition and understanding to manipulate and combine it with other control tools for applications that have not been encountered before.
The authors provide readers with a thought-provoking framework for rigorously considering such questions as:
* What properties should the function approximator have?
* Are certain families of approximators superior to others?
* Can the stability and the convergence of the approximator parameters be guaranteed?
* Can control systems be designed to be robust in the face of noise, disturbances, and unmodeled effects?
* Can this approach handle significant changes in the dynamics due to such disruptions as system failure?
* What types of nonlinear dynamic systems are amenable to this approach?
* What are the limitations of adaptive approximation based control?
Combining theoretical formulation and design techniques with extensive use of simulation examples, this book is a stimulating text for researchers and graduate students and a valuable resource for practicing engineers.
网站评分
书籍多样性:6分
书籍信息完全性:7分
网站更新速度:3分
使用便利性:6分
书籍清晰度:4分
书籍格式兼容性:4分
是否包含广告:6分
加载速度:7分
安全性:6分
稳定性:8分
搜索功能:4分
下载便捷性:7分
下载点评
- 好评多(127+)
- 值得购买(499+)
- 图书多(648+)
- 博大精深(528+)
- mobi(479+)
- 简单(517+)
- 四星好评(646+)
下载评价
- 网友 利***巧:
差评。这个是收费的
- 网友 扈***洁:
还不错啊,挺好
- 网友 寇***音:
好,真的挺使用的!
- 网友 相***儿:
你要的这里都能找到哦!!!
- 网友 汪***豪:
太棒了,我想要azw3的都有呀!!!
- 网友 曾***文:
五星好评哦
- 网友 国***芳:
五星好评
- 网友 宓***莉:
不仅速度快,而且内容无盗版痕迹。
- 网友 龚***湄:
差评,居然要收费!!!
- 网友 方***旋:
真的很好,里面很多小说都能搜到,但就是收费的太多了
- 网友 寿***芳:
可以在线转化哦
喜欢"Adaptive approximation based control基于近似自适应的控制:神经系统的、模糊的与传统的自适应方法统一"的人也看了
电子元器件速查与计算手册 pdf pdb 阿里云 极速 mobi caj kindle 下载
一本小小的金色语法书 pdf pdb 阿里云 极速 mobi caj kindle 下载
风险管理(初级)过关必做1000题(含历年真题)(第2版) pdf pdb 阿里云 极速 mobi caj kindle 下载
味好美—10分钟家常凉拌 pdf pdb 阿里云 极速 mobi caj kindle 下载
地球之书 pdf pdb 阿里云 极速 mobi caj kindle 下载
巴郎SATII化学 (美) 马谢塔 (Joseph A.Mascetta) 凯尼恩(Mark【正版保证】 pdf pdb 阿里云 极速 mobi caj kindle 下载
全新正版图书 姜小牙上学记 我的变形记 北猫 四川少年儿童出版社 9787536584709 青岛新华书店旗舰店 pdf pdb 阿里云 极速 mobi caj kindle 下载
9787550413290 pdf pdb 阿里云 极速 mobi caj kindle 下载
小学数学同步阅读三年级数学 学虫数学阅读教材 pdf pdb 阿里云 极速 mobi caj kindle 下载
How to Be a Billionaire pdf pdb 阿里云 极速 mobi caj kindle 下载
- 民间收藏中国书画集粹 周金品 著作 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 当心你身边的精神变态者 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 全国统计从业资格考试习题集 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 信托登记制度研究 pdf pdb 阿里云 极速 mobi caj kindle 下载
- JB/T 11143-2011 锂离子蓄电池充电设备接口和通信协议 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 数学新高考二轮复习进阶课例 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 会计学原理 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 通用规范汉字3500字 楷书 荆霄鹏 墨点字帖漂亮临摹练字男女初学者硬笔书法练字帖入门速成练字帖 新华书店正版图书籍 湖北美术 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 微生物制药技术 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 遗传学名词 pdf pdb 阿里云 极速 mobi caj kindle 下载
书籍真实打分
故事情节:3分
人物塑造:9分
主题深度:9分
文字风格:6分
语言运用:7分
文笔流畅:6分
思想传递:5分
知识深度:8分
知识广度:9分
实用性:7分
章节划分:5分
结构布局:5分
新颖与独特:8分
情感共鸣:7分
引人入胜:8分
现实相关:8分
沉浸感:4分
事实准确性:3分
文化贡献:3分