Making sense of data了解数据:探索数据分析与数据挖掘实用指南 pdf pdb 阿里云 极速 mobi caj kindle 下载

Making sense of data了解数据:探索数据分析与数据挖掘实用指南电子书下载地址
- 文件名
- [epub 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 epub格式电子书
- [azw3 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 azw3格式电子书
- [pdf 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 pdf格式电子书
- [txt 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 txt格式电子书
- [mobi 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 mobi格式电子书
- [word 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 word格式电子书
- [kindle 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 kindle格式电子书
内容简介:
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
书籍目录:
Preface
1 Introduction
1.1 Overview
1.2 Problem definition
1.3 Data preparation
1.4 Implementation of the analysis
1.5 Deployment of the results
1.6 Book outline
1.7 Summary
1.8 Further reading
2 Definition
2.1 Overview
2.2 Objectives
2.3 Deliverables
2.4 Roles and responsibilities
2.5 Project plan
2.6 Case study
2.6.1 Overview
2.6.2 Problem
2.6.3 Deliverables
2.6.4 Roles and responsibilities
2.6.5 Current situation
2.6.6 Timetable and budget
2.6.7 Cost/benefit analysis
2.7 Summary
2.8 Further reading
3 Preparation
3.1 Overview
3.2 Data sources
3.3 Data understanding
3.3.1 Data tables
3.3.2 Continuous and discrete variables
3.3.3 Scales of measurement
3.3.4 Roles in analysis
3.3.5 Frequency distribution
3.4 Data preparation
3.4.1 Overview
3.4.2 Cleaning the data
3.4.3 Removing variables
3.4.4 Data transformations
3.4.5 Segmentation
3.5 Summary
3.6 Exercises
3.7 Further reading
4 Tables and graphs
4.1 Introduction
4.2 Tables
4.2.1 Data tables
4.2.2 Contingency tables
4.2.3 Summary tables
4.3 Graphs
4.3.1 Overview
4.3.2 Frequency polygrams and histograms
4.3.3 Scatterplots
4.3.4 Box plots
4.3.5 Multiple graphs
4.4 Summary
4.5 Exercises
4.6 Further reading
5 Statistics
5.1 Overview
5.2 Descriptive statistics
5.2.1 Overview
5.2.2 Central tendency
5.2.3 Variation
5.2.4 Shape
5.2.5 Example
5.3 Inferential statistics
5.3.1 Overview
5.3.2 Confidence intervals
5.3.3 Hypothesis tests
5.3.4 Chi-square
5.3.5 One-way analysis of variance
5.4 Comparative statistics
5.4.1 Overview
5.4.2 Visualizing relationships
5.4.3 Correlation coefficient (r)
5.4.4 Correlation analysis for more than two variables
5.5 Summary
5.6 Exercises
5.7 Further reading
6 Grouping
6.1 Introduction
6.1.1 Overview
6.1.2 Grouping by values or ranges
6.1.3 Similarity measures
6.1.4 Grouping approaches
6.2 Clustering
6.2.1 Overview
6.2.2 Hierarchical agglomerative clustering
6.2.3 K-means clustering
6.3 Associative rules
6.3.1 Overview
6.3.2 Grouping by value combinations
6.3.3 Extracting rules from groups
6.3.4 Example
6.4 Decision trees
6.4.1 Overview
6.4.2 Tree generation
6.4.3 Splitting criteria
6.4.4 Example
6.5 Summary
6.6 Exercises
6.7 Further reading
7 Prediction
7.1 Introduction
7.1.1 Overview
7.1.2 Classification
7.1.3 Regression
7.1.4 Building a prediction model
7.1.5 Applying a prediction model
7.2 Simple regression models
7.2.1 Overview
7.2.2 Simple linear regression
7.2.3 Simple nonlinear regression
7.3 K-nearest neighbors
7.3.1 Overview
7.3.2 Learning
7.3.3 Prediction
7.4 Classification and regression trees
7.4.1 Overview
7.4.2 Predicting using decision trees
7.4.3 Example
7.5 Neural networks
7.5.1 Overview
7.5.2 Neural network layers
7.5.3 Node calculations
7.5.4 Neural network predictions
7.5.5 Learning process
7.5.6 Backpropagation
7.5.7 Using neural networks
7.5.8 Example
7.6 Other methods
7.7 Summary
7.8 Exercises
7.9 Further reading
8 Deployment
8.1 Overview
8.2 Deliverables
8.3 Activities
8.4 Deployment scenarios
8.5 Summary
8.6 Further reading
9 Conclusions
9.1 Summary of process
9.2 Example
9.2.1 Problem overview
9.2.2 Problem definition
9.2.3 Data preparation
9.2.4 Implementation of the analysis
9.2.5 Deployment of the results
9.3 Advanced data mining
9.3.1 Overview
9.3.2 Text data mining
9.3.3 Time series data mining
9.3.4 Sequence data mining
9.4 Further reading
Appendix A Statistical tables
A.1 Normal distribution
A.2 Student’s t-distribution
A.3 Chi-square distribution
A.4 F-distribution
Appendix B Answers to exercises
Glossary
Bibliography
Index
作者介绍:
GLENN J. MYATT, PhD, is cofounder of Leadscope, Inc., a data mining company providing solutions to the pharmaceutical and chemical industry. He has also acted as a part-time lecturer in chemoinformatics at The Ohio State University and has held a series o
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
网站评分
书籍多样性:5分
书籍信息完全性:5分
网站更新速度:8分
使用便利性:9分
书籍清晰度:6分
书籍格式兼容性:3分
是否包含广告:4分
加载速度:7分
安全性:5分
稳定性:6分
搜索功能:7分
下载便捷性:6分
下载点评
- 四星好评(539+)
- 不亏(555+)
- 内容完整(598+)
- 字体合适(472+)
- epub(571+)
- pdf(402+)
- 小说多(203+)
- 品质不错(200+)
下载评价
- 网友 国***芳:
五星好评
- 网友 养***秋:
我是新来的考古学家
- 网友 马***偲:
好 很好 非常好 无比的好 史上最好的
- 网友 孔***旋:
很好。顶一个希望越来越好,一直支持。
- 网友 车***波:
很好,下载出来的内容没有乱码。
- 网友 潘***丽:
这里能在线转化,直接选择一款就可以了,用他这个转很方便的
- 网友 焦***山:
不错。。。。。
- 网友 敖***菡:
是个好网站,很便捷
- 网友 蓬***之:
好棒good
- 网友 相***儿:
你要的这里都能找到哦!!!
喜欢"Making sense of data了解数据:探索数据分析与数据挖掘实用指南"的人也看了
50天攻克BEC中级 写作篇(10天) pdf pdb 阿里云 极速 mobi caj kindle 下载
蝴蝶小谣曲 中国少年儿童出版社 pdf pdb 阿里云 极速 mobi caj kindle 下载
Oracle8+PowerBuilder7数据库应用开发 pdf pdb 阿里云 极速 mobi caj kindle 下载
孩童厌学 pdf pdb 阿里云 极速 mobi caj kindle 下载
天利38套2024新福建中考试题分类精选700题 历史 福建专版中考政治历年真题卷试题全套分类精粹初三9九年级刷题专项提升巩固基础题 pdf pdb 阿里云 极速 mobi caj kindle 下载
三毛流浪记 pdf pdb 阿里云 极速 mobi caj kindle 下载
血管和腔内血管外科学精要 泽勒诺克(GeraldB.Zelenock) pdf pdb 阿里云 极速 mobi caj kindle 下载
全国美术考级指定专用教材 色彩考级9-10级 pdf pdb 阿里云 极速 mobi caj kindle 下载
可以在路上 pdf pdb 阿里云 极速 mobi caj kindle 下载
精神科的故事:锅男 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 美国太空力量体系建设及作战运用研究 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 丝路起点看洛阳 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 全新正版图书 银河洗尘马三枣接力出版社9787544862929青岛新华书店旗舰店 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 一级注册建筑师规范汇编(修订缩印本) pdf pdb 阿里云 极速 mobi caj kindle 下载
- 社会医学(本科管理) pdf pdb 阿里云 极速 mobi caj kindle 下载
- LTE无线网络优化实践(第2版) 人民邮电出版社 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 扩散模型从原理到实战 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 男人不衰老的老偏方 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 生活别爆炸 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 人工智能英语教程 机械工业出版社 pdf pdb 阿里云 极速 mobi caj kindle 下载
书籍真实打分
故事情节:8分
人物塑造:9分
主题深度:6分
文字风格:5分
语言运用:9分
文笔流畅:6分
思想传递:9分
知识深度:7分
知识广度:4分
实用性:3分
章节划分:5分
结构布局:4分
新颖与独特:4分
情感共鸣:8分
引人入胜:4分
现实相关:5分
沉浸感:6分
事实准确性:3分
文化贡献:7分