Applied spatial statistics for public health data公共卫生数据应用空间分析 pdf pdb 阿里云 极速 mobi caj kindle 下载

Applied spatial statistics for public health data公共卫生数据应用空间分析电子书下载地址
- 文件名
- [epub 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 epub格式电子书
- [azw3 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 azw3格式电子书
- [pdf 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 pdf格式电子书
- [txt 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 txt格式电子书
- [mobi 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 mobi格式电子书
- [word 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 word格式电子书
- [kindle 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 kindle格式电子书
内容简介:
While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data.
This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field
Requires only minimal background in public health and only some knowledge of statistics through multiple regression
Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure
Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks")
Exercises based on data analyses reinforce concepts
书籍目录:
Preface
Acknowledgments
1 Introduction
1.1 Why Spatial Data in Public Health?
1.2 Why Statistical Methods for Spatial Data?
1.3 Intersection of Three Fields of Study
1.4 Organization of the Book
2 Analyzing Public Health Data
2.1 Observational vsExperimental Data
2.2 Risk and Rates
2.2.1 Incidence and Prevalence
2.2.2 Risk
2.2.3 Estimating Risk: Rates and Proportions
2.2.4 Relative and Attributable Risks
2.3 Making Rates Comparable: Standardized Rates
2.3.1 Direct Standardization
2.3.2 Indirect Standardization
2.3.3 Direct or Indirect?
2.3.4 Standardizing to What Standard?
2.3.5 Cautions with Standardized Rates
2.4 Basic Epidemiological Study Designs
2.4.1 Prospective Cohort Studies
2.4.2 Retrospective Case–Control Studies
2.4.3 Other Types of Epidemiological Studies
2.5 Basic Analytic Tool: The Odds Ratio
2.6 Modeling Counts and Rates
2.6.1 Generalized Linear Models
2.6.2 Logistic Regression
2.6.3 Poisson Regression
2.7 Challenges in the Analysis of Observational Data
2.7.1 Bias
2.7.2 Confounding
2.7.3 Effect Modification
2.7.4 Ecological Inference and the Ecological Fallacy
2.8 Additional Topics and Further Reading
2.9 Exercises
3 Spatial Data
3.1 Components of Spatial Data
3.2 An Odyssey into Geodesy
3.2.1 Measuring Location: Geographical Coordinates
3.2.2 Flattening the Globe: Map Projections and Coordinate Systems
3.2.3 Mathematics of Location: Vector and Polygon Geometry
3.3 Sources of Spatial Data
3.3.1 Health Data
3.3.2 Census-Related Data
3.3.3 Geocoding
3.3.4 Digital Cartographic Data
3.3.5 Environmental and Natural Resource Data
3.3.6 Remotely Sensed Data
3.3.7 Digitizing
3.3.8 Collect Your Own!
3.4 Geographic Information Systems
3.4.1 Vector and Raster GISs
3.4.2 Basic GIS Operations
3.4.3 Spatial Analysis within GIS
3.5 Problems with Spatial Data and GIS
3.5.1 Inaccurate and Incomplete Databases
3.5.2 Confidentiality
3.5.3 Use of ZIP Codes
3.5.4 Geocoding Issues
3.5.5 Location Uncertainty
4 Visualizing Spatial Data
4.1 Cartography: The Art and Science of Mapmaking
4.2 Types of Statistical Maps
MAP STUDY: Very Low Birth Weights in Georgia Health Care District 9
4.2.1 Maps for Point Features
4.2.2 Maps for Areal Features
4.3 Symbolization
4.3.1 Map Generalization
4.3.2 Visual Variables
4.3.3 Color
4.4 Mapping Smoothed Rates and Probabilities
4.4.1 Locally Weighted Averages
4.4.2 Nonparametric Regression
4.4.3 Empirical Bayes Smoothing
4.4.4 Probability Mapping
4.4.5 Practical Notes and Recommendations
CASE STUDY: Smoothing New York Leukemia Data
4.5 Modifiable Areal Unit Problem
4.6 Additional Topics and Further Reading
4.6.1 Visualization
4.6.2 Additional Types of Maps
4.6.3 Exploratory Spatial Data Analysis
4.6.4 Other Smoothing Approaches
4.6.5 Edge Effects
4.7 Exercises
5 Analysis of Spatial Point Patterns
5.1 Types of Patterns
5.2 Spatial Point Processes
5.2.1 Stationarity and Isotropy
5.2.2 Spatial Poisson Processes and CSR
5.2.3 Hypothesis Tests of CSR via Monte Carlo Methods
5.2.4 Heterogeneous Poisson Processes
5.2.5 Estimating Intensity Functions
DATA BREAK: Early Medieval Grave Sites
5.3 K Function
5.3.1 Estimating the K Function
5.3.2 Diagnostic Plots Based on the K Function
5.3.3 Monte Carlo Assessments of CSR Based on the K Function
DATA BREAK: Early Medieval Grave Sites
5.3.4 Roles of First- and Second-Order Properties
5.4 Other Spatial Point Processes
5.4.1 Poisson Cluster Processes
5.4.2 Contagion/Inhibition Processes
5.4.3 Cox Processes
5.4.4 Distinguishing Processes
5.5 Additional Topics and Further Reading
5.6 Exercises
6 Spatial Clusters of Health Events: Point Data for Cases and Controls
6.1 What Do We Have? Data Types and Related Issues
6.2 What Do We Want? Null and Alternative Hypotheses
6.3 Categorization of Methods
6.4 Comparing Point Process Summaries
6.4.1 Goals
6.4.2 Assumptions and Typical Output
6.4.3 Method: Ratio of Kernel Intensity Estimates
DATA BREAK: Early Medieval Grave Sites
6.4.4 Method: Difference between K Functions
DATA BREAK: Early Medieval Grave Sites
6.5 Scanning Local Rates
6.5.1 Goals
6.5.2 Assumptions and Typical Output
6.5.3 Method: Geographical Analysis Machine
6.5.4 Method: Overlapping Local Case Proportions
DATA BREAK: Early Medieval Grave Sites
6.5.5 Method: Spatial Scan Statistics
DATA BREAK: Early Medieval Grave Sites
6.6 Nearest-Neighbor Statistics
6.6.1 Goals
6.6.2 Assumptions and Typical Output
6.6.3 Method: q Nearest Neighbors of Cases
CASE STUDY: San Diego Asthma
6.7 Further Reading
6.8 Exercises
7 Spatial Clustering of Health Events: Regional Count Data
7.1 What Do We Have and What Do We Want?
7.1.1 Data Structure
7.1.2 Null Hypotheses
7.1.3 Alternative Hypotheses
7.2 Categorization of Methods
7.3 Scanning Local Rates
7.3.1 Goals
7.3.2 Assumptions
7.3.3 Method: Overlapping Local Rates
DATA BREAK: New York Leukemia Data
7.3.4 Method: Turnbull et al.’s CEPP
7.3.5 Method: Besag and Newell Approach
7.3.6 Method: Spatial Scan Statistics
7.4 Global Indexes of Spatial Autocorrelation
7.4.1 Goals
7.4.2 Assumptions and Typical Output
7.4.3 Method: Moran’s I
7.4.4 Method: Geary’s c
7.5 Local Indicators of Spatial Association
7.5.1 Goals
7.5.2 Assumptions and Typical Output
7.5.3 Method: Local Moran’s I
7.6 Goodness-of-Fit Statistics
7.6.1 Goals
7.6.2 Assumptions and Typical Output
7.6.3 Method: Pearson’s χ2
7.6.4 Method: Tango’s Index
7.6.5 Method: Focused Score Tests of Trend
7.7 Statistical Power and Related Considerations
7.7.1 Power Depends on the Alternative Hypothesis
7.7.2 Power Depends on the Data Structure
7.7.3 Theoretical Assessment of Power
7.7.4 Monte Carlo Assessment of Power
7.7.5 Benchmark Data and Conditional Power Assessments
7.8 Additional Topics and Further Reading
7.8.1 Related Research Regarding Indexes of Spatial Association
7.8.2 Additional Approaches for Detecting Clusters and/or Clustering
7.8.3 Space–Time Clustering and Disease Surveillance
7.9 Exercises
8 Spatial Exposure Data
8.1 Random Fields and Stationarity
8.2 Semivariograms
8.2.1 Relationship to Covariance Function and Correlogram
8.2.2 Parametric Isotropic Semivariogram Models
8.2.3 Estimating the Semivariogram
DATA BREAK: Smoky Mountain pH Data
8.2.4 Fitting Semivariogram Models
8.2.5 Anisotropic Semivariogram Modeling
8.3 Interpolation and Spatial Prediction
8.3.1 Inverse-Distance Interpolation
8.3.2 Kriging
CASE STUDY: Hazardous Waste Site Remediation
8.4 Additional Topics and Further Reading
8.4.1 Erratic Experimental Semivariograms
8.4.2 Sampling Distribution of the Classical Semivariogram Estimator
8.4.3 Nonparametric Semivariogram Models
8.4.4 Kriging Non-Gaussian Data
8.4.5 Geostatistical Simulation
8.4.6 Use of Non-Euclidean Distances in Geostatistics
8.4.7 Spatial Sampling and Network Design
8.5 Exercises
9 Linking Spatial Exposure Data to Health Events
9.1 Linear Regression Models for Independent Data
9.1.1 Estimation and Inference
9.1.2 Interpretation and Use with Spatial Data
DATA BREAK: Raccoon Rabies in Connecticut
9.2 Linear Regression Models for Spatially Autocorrelated Data
9.2.1 Estimation and Inference
9.2.2 Interpretation and Use with Spatial Data
9.2.3 Predicting New Observations: Universal Kriging
DATA BREAK: New York Leukemia Data
9.3 Spatial Autoregressive Models
9.3.1 Simultaneous Autoregressive Models
9.3.2 Conditional Autoregressive Models
9.3.3 Concluding Remarks on Conditional Autoregressions
9.3.4 Concluding Remarks on Spatial Autoregressions
9.4 Generalized Linear Models
9.4.1 Fixed Effects and the Marginal Specification
9.4.2 Mixed Models and Conditional Specification
9.4.3 Estimation in Spatial GLMs and GLMMs
DATA BREAK: Modeling Lip Cancer Morbidity in Scotland
9.4.4 Additional Considerations in Spatial GLMs
CASE STUDY: Very Low Birth Weights in Georgia Health Care District 9
9.5 Bayesian Models for Disease Mapping
9.5.1 Hierarchical Structure
9.5.2 Estimation and Inference
9.5.3 Interpretation and Use with Spatial Data
9.6 Parting Thoughts
9.7 Additional Topics and Further Reading
9.7.1 General References
9.7.2 Restricted Maximum Likelihood Estimation
9.7.3 Residual Analysis with Spatially Correlated Error Terms
9.7.4 Two-Parameter Autoregressive Models
9.7.5 Non-Gaussian Spatial Autoregressive Models
9.7.6 Classical/Bayesian GLMMs
9.7.7 Prediction with GLMs
9.7.8 Bayesian Hierarchical Models for Spatial Data
9.8 Exercises
References
Author Index
Subject Index
作者介绍:
LANCE A. WALLER, PhD, is an associate professor in the Department of Biostatistics at Emory University in Atlanta, Georgia. He received his PhD in Operations Research in 1992 from Cornell University. Dr. Waller was named Student Government Professor of th
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data. This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field Requires only minimal background in public health and only some knowledge of statistics through multiple regression Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks") Exercises based on data analyses reinforce concepts
网站评分
书籍多样性:4分
书籍信息完全性:3分
网站更新速度:3分
使用便利性:3分
书籍清晰度:9分
书籍格式兼容性:4分
是否包含广告:8分
加载速度:5分
安全性:3分
稳定性:6分
搜索功能:7分
下载便捷性:4分
下载点评
- 情节曲折(217+)
- 服务好(269+)
- 书籍多(632+)
- 差评(533+)
- mobi(500+)
- 藏书馆(657+)
- 值得下载(293+)
- 五星好评(283+)
- 一星好评(509+)
- 简单(313+)
- 体验满分(295+)
- 内容完整(143+)
- 可以购买(548+)
下载评价
- 网友 瞿***香:
非常好就是加载有点儿慢。
- 网友 堵***洁:
好用,支持
- 网友 濮***彤:
好棒啊!图书很全
- 网友 谢***灵:
推荐,啥格式都有
- 网友 汪***豪:
太棒了,我想要azw3的都有呀!!!
- 网友 印***文:
我很喜欢这种风格样式。
- 网友 常***翠:
哈哈哈哈哈哈
- 网友 戈***玉:
特别棒
- 网友 菱***兰:
特好。有好多书
- 网友 曾***文:
五星好评哦
- 网友 后***之:
强烈推荐!无论下载速度还是书籍内容都没话说 真的很良心!
- 网友 马***偲:
好 很好 非常好 无比的好 史上最好的
- 网友 谭***然:
如果不要钱就好了
喜欢"Applied spatial statistics for public health data公共卫生数据应用空间分析"的人也看了
口琴演奏世界名曲80首【正版保证】 pdf pdb 阿里云 极速 mobi caj kindle 下载
安全生产专业实务习题集(煤矿安全2021版中级全国中级注册安全工程师职业资格考试配套 pdf pdb 阿里云 极速 mobi caj kindle 下载
加菲猫②梦游世界 (美)戴维斯 著,彭颖 译 北京出版社【正版保证】 pdf pdb 阿里云 极速 mobi caj kindle 下载
9787030379252 pdf pdb 阿里云 极速 mobi caj kindle 下载
孝经礼记(上中下)(精) pdf pdb 阿里云 极速 mobi caj kindle 下载
全新正版图书 5岁儿童大脑潜能开发 晨风童书 中国人口出版社 9787510162015青岛新华书店旗舰店 pdf pdb 阿里云 极速 mobi caj kindle 下载
2019版 全国社会工作者考试指导教材 社区工作师考试辅导书应试题集 社会工作实务(中级)考试过关必做 民政部指定社工教材 pdf pdb 阿里云 极速 mobi caj kindle 下载
官方正版 全套8册曲黎敏的书籍生命沉思录全3册启示录 三册从头到脚2册讲健康 曲黎敏讲黄帝内经 原著全集123 中医养生 白话版二手 pdf pdb 阿里云 极速 mobi caj kindle 下载
能源法律法规政策文件汇编 国家能源局 编 中国经济出版社【正版书】 pdf pdb 阿里云 极速 mobi caj kindle 下载
华职教育自学考试自考试卷类赠送随身学习手册2014年全国高等教育自学考试创新型试卷系列操作系统阶梯式突破试卷(单元卷+仿真卷+密押卷+真题卷)课程代码02326 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 我的阅读史(第二版) 洪子诚学术作品集 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 9787114111716 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 肺部微创高新诊疗技术手册 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 【预订】The Merchant of Venice 9780763630256 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 营销管理(第14版·全球版) pdf pdb 阿里云 极速 mobi caj kindle 下载
- 2011年英语专业4级考试新闻听力突破 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 【正版库存轻度瑕疵】闭目养神 中医脏腑经络调理 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 基于语料库的0-5岁汉语儿童语言发展研究 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 智斗:桥牌竞技与三十六计【正版书籍 无忧售后】 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 美国东部: Lonely Planet旅行指南系列[中文第二版] pdf pdb 阿里云 极速 mobi caj kindle 下载
书籍真实打分
故事情节:6分
人物塑造:9分
主题深度:7分
文字风格:9分
语言运用:3分
文笔流畅:3分
思想传递:4分
知识深度:8分
知识广度:9分
实用性:7分
章节划分:7分
结构布局:8分
新颖与独特:9分
情感共鸣:8分
引人入胜:8分
现实相关:7分
沉浸感:6分
事实准确性:5分
文化贡献:6分