公共不变子空间与紧型条件 pdf pdb 阿里云 极速 mobi caj kindle 下载

公共不变子空间与紧型条件电子书下载地址
内容简介:
“Commoninvariantsubspacesandcompactnessconditions”一书主要总结了算子集合的不变子空间性质,以及类紧算元的相关结果。在算子理论中,我们把紧的拟幂零算子称为Volterra算子。由Volterra算子组成的集合亦称为Volterra集合,如Volterra半群,Volterra代数等。在《公共不变子空间与紧型条件》的第一部分,我们主要讨论Volterra半群,Volterra李代数,Volterra约当代数的不变子空间问题,这些问题都曾经是算子理论、算子李代数中的经典公开问题,在1999-2005年左右得以解决,收录于《公共不变子空间与紧型条件》第一部分。在《公共不变子空间与紧型条件》的第二部分,我们讨论了幂零李代数生成Banach代数是否为Engel代数的这一公开问题,这也是算子李代数的经典问题,至今尚未完全解决,相关部分结果收录于第五章,随后我们把紧算子的相关性质向Banach代数中类紧元集合推广,给出了离散根的定义和性质,*后,我们给出了离散根的扰动理论,这从经典的算子理论中的扰动理论刻画了离散根的本质。除本人研究成果外,《公共不变子空间与紧型条件》亦收录了著名算子理论学者Shulman,Turovskii,Kennedy等专家的从1999到2019年的相关成果。
书籍目录:
Contents
Preface
Notation
Part I Preliminaries
Chapter 1 Banach Algebras 3
1.1 Jacobson radical and derivation 3
1.2 Analytic properties of the spectrum 5
1.3 Representation theory 6
Chapter 2 Operator Theory 8
2.1 Compact operators 8
2.2 Riesz and scattered operators 10
2.3 Decomposable operator 11
Chapter 3 Lie Algebras 15
3.1 Nilpotent and solvable Lie algebras 15
3.2 Engel algebras 17
3.3 Semisimple Lie algebras 20
Part II Beger-Wang Formulas and Applications
Chapter 4 Joint Spectral Radius 23
4.1 Preliminary properties 23
4.2 Joint quasinilpotence 26
4.3 Analytic properties 29
4.4 Hausdorff measure 31
4.5 Hausdorff and essential spectral radii 32
Chapter 5 Topological Radicals 36
5.1 Preliminary properties 36
5.2 Compactly quasinilpotent radical 37
5.3 Hypocompact radical 45
5.4 The radical rad ^ Rhc 50
Chapter 6 Beger-Wang Formula and Applications 52
6.1 Compactly quasinilpotence 52
6.2 Joint spectral radius on complete chain case 58
6.3 Beger-Wang formula 60
6.4 Coincidence of Hausdorff and essential radii 70
Chapter 7 Generalized Beger-Wang Formulas and Applications 75
7.1 Mixed GBWF 75
7.2 Operator GBWF 80
7.3 Banach algebraic GBWF 81
7.4 Volterra Lie algebra problem 83
Notes 90
Part III Volterra Ideal Theorem and Applications
Chapter 8 Elementary Spectral Manifolds 95
8.1 Preliminary properties 95
8.2 Algebraic and spatial formulas 99
8.3 Applications to scattered operators 103
Chapter 9 Volterra Ideal Problem 112
9.1 A reducibility criterion 112
9.2 Quasi-commutant and quasi-center 114
9.3 Solution of Volterra ideal problem 118
Chapter 10 Lie Algebras of Compact Operators 124
10.1 Engel and E-solvable ideals 124
10.2 ad-compact element 128
10.3 Largest E-solvable ideal 130
Chapter 11 Ad-Compact Lie Algebras 136
11.1 The largest Engel ideal 136
11.2 Irreducible representations by compact operators 138
11.3 E-solvable algebras and E-radical 141
Notes 149
Part IV Lie Algebras Generated by Special Operators
Chapter 12 Essentially Nilpotent Lie Algebras 153
12.1 Two Problems on operator Lie algebras 153
12.2 Nilpotent Lie algebras generated by decomposable operators 154
12.3 Lie algebras generated by quasinilpotent operators 156
12.4 Compact quasinilpotence 159
Chapter 13 Lie Algebras Generated by Operators on Hilbert Spaces 162
13.1 Finite dimensional selfadjoint Lie algebras 162
13.2 Finite dimensional semisimple Lie algebras 166
13.3 Selfadjoint ad-compact E-solvable Lie algebras 170
Chapter 14 Lie Algebras Generated by Jordan Operators 172
14.1 Lie algebras generated by normal operators 172
14.2 Lie algebras generated by Jordan operators 175
Chapter 15 Lie Algebras Generated by Riesz Operators 180
15.1 Engel Lie algebras 180
15.2 E-solvable Lie algebras 183
15.3 Applications to polynomially compact operators 189
Notes 191
Bibliography 192
Index 195
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
“Commoninvariantsubspacesandcompactnessconditions”一书主要总结了算子集合的不变子空间性质,以及类紧算元的相关结果。在算子理论中,我们把紧的拟幂零算子称为Volterra算子。由Volterra算子组成的集合亦称为Volterra集合,如Volterra半群,Volterra代数等。在《公共不变子空间与紧型条件》的第一部分,我们主要讨论Volterra半群,Volterra李代数,Volterra约当代数的不变子空间问题,这些问题都曾经是算子理论、算子李代数中的经典公开问题,在1999-2005年左右得以解决,收录于《公共不变子空间与紧型条件》第一部分。在《公共不变子空间与紧型条件》的第二部分,我们讨论了幂零李代数生成Banach代数是否为Engel代数的这一公开问题,这也是算子李代数的经典问题,至今尚未完全解决,相关部分结果收录于第五章,随后我们把紧算子的相关性质向Banach代数中类紧元集合推广,给出了离散根的定义和性质,*后,我们给出了离散根的扰动理论,这从经典的算子理论中的扰动理论刻画了离散根的本质。除本人研究成果外,《公共不变子空间与紧型条件》亦收录了著名算子理论学者Shulman,Turovskii,Kennedy等专家的从1999到2019年的相关成果。
网站评分
书籍多样性:8分
书籍信息完全性:6分
网站更新速度:4分
使用便利性:6分
书籍清晰度:6分
书籍格式兼容性:8分
是否包含广告:5分
加载速度:6分
安全性:6分
稳定性:3分
搜索功能:8分
下载便捷性:3分
下载点评
- 在线转格式(594+)
- 赚了(274+)
- 藏书馆(447+)
- 体验差(141+)
- 超值(265+)
- 不亏(384+)
- 值得下载(440+)
- 好评多(570+)
下载评价
- 网友 宓***莉:
不仅速度快,而且内容无盗版痕迹。
- 网友 家***丝:
好6666666
- 网友 印***文:
我很喜欢这种风格样式。
- 网友 晏***媛:
够人性化!
- 网友 曹***雯:
为什么许多书都找不到?
- 网友 养***秋:
我是新来的考古学家
- 网友 常***翠:
哈哈哈哈哈哈
- 网友 利***巧:
差评。这个是收费的
- 网友 潘***丽:
这里能在线转化,直接选择一款就可以了,用他这个转很方便的
- 网友 温***欣:
可以可以可以
- 网友 沈***松:
挺好的,不错
- 网友 仰***兰:
喜欢!很棒!!超级推荐!
- 网友 冉***兮:
如果满分一百分,我愿意给你99分,剩下一分怕你骄傲
- 网友 宫***玉:
我说完了。
- 网友 苍***如:
什么格式都有的呀。
喜欢"公共不变子空间与紧型条件"的人也看了
千两花嫁 pdf pdb 阿里云 极速 mobi caj kindle 下载
【新华书店正版】【新华书店正版】沈阳专用9九年级下册北师版数学+沪教版英语化学+人教版语文道德与法治中国历史全套6本课本教材教科书初三下学期九下数学北师英语化学沪教语文道德历史人教套装 pdf pdb 阿里云 极速 mobi caj kindle 下载
【预订】Living with Eating Disorders 9780816073283 pdf pdb 阿里云 极速 mobi caj kindle 下载
上海女人【可开电子发票】 pdf pdb 阿里云 极速 mobi caj kindle 下载
2012全国注册安全工程师执业资格考试模拟试卷——安全生产事故案例分析 pdf pdb 阿里云 极速 mobi caj kindle 下载
农业巨灾风险保障体系及其实施难点研究 pdf pdb 阿里云 极速 mobi caj kindle 下载
德意志历史 pdf pdb 阿里云 极速 mobi caj kindle 下载
猫和老鼠-经典动漫全集(全5册) pdf pdb 阿里云 极速 mobi caj kindle 下载
中国碑帖经典-陆柬之文赋 上海书画 上海书画正版 艺术 书法 篆刻 碑帖 pdf pdb 阿里云 极速 mobi caj kindle 下载
勇敢的心 心脏科学与外科手术的传奇故事 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 2022版 图解速记高中数理化知识大全高中数理化公式大全高中化学公式定律手册口袋书高中数理化基础知识清单大全手册pass绿卡图书 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 一年灯火要人归:唐诗宋词日历·二〇一九 pdf pdb 阿里云 极速 mobi caj kindle 下载
- JSP编程指南(第二版) pdf pdb 阿里云 极速 mobi caj kindle 下载
- 海外直订Composition Notebook: Movie Theater Popcorn Soda Movie Theater Ticket Journal and Notebook 作文... pdf pdb 阿里云 极速 mobi caj kindle 下载
- 你不可不知的人性(全二册)(新版) pdf pdb 阿里云 极速 mobi caj kindle 下载
- PERRY化学工程手册(上)(六版)(美) pdf pdb 阿里云 极速 mobi caj kindle 下载
- 心灵的面具 (第二版) pdf pdb 阿里云 极速 mobi caj kindle 下载
- 百年经典童话绘本 修订版(全30册) 贵州人民出版社 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 百家姓(注音彩绘版)小学生1-6年级课外读物国学经典儿童子系列名师推荐精选智慧故事 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 直视骄阳 pdf pdb 阿里云 极速 mobi caj kindle 下载
书籍真实打分
故事情节:6分
人物塑造:3分
主题深度:6分
文字风格:4分
语言运用:6分
文笔流畅:8分
思想传递:7分
知识深度:8分
知识广度:3分
实用性:5分
章节划分:3分
结构布局:6分
新颖与独特:9分
情感共鸣:3分
引人入胜:7分
现实相关:9分
沉浸感:3分
事实准确性:3分
文化贡献:6分