Euler pdf pdb 阿里云 极速 mobi caj kindle 下载

Euler电子书下载地址
内容简介:
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
书籍目录:
Chapters
1. Euler and Number Theory
2. Euler and Logarithms
3. Euler and Infinite Series
4. Euler and Analytic Number Theory
5. Euler and Complex Variables
6. Euler and Algebra
7. Euler and Geometry
8. Euler and Combinatorics
Conclusion
Appendix: Euler’s Opera Omnia
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
网站评分
书籍多样性:5分
书籍信息完全性:5分
网站更新速度:4分
使用便利性:3分
书籍清晰度:3分
书籍格式兼容性:6分
是否包含广告:4分
加载速度:9分
安全性:4分
稳定性:8分
搜索功能:3分
下载便捷性:3分
下载点评
- 好评多(539+)
- 引人入胜(544+)
- 三星好评(191+)
- 博大精深(476+)
- mobi(401+)
- 服务好(292+)
- 微信读书(139+)
- 傻瓜式服务(338+)
- 简单(658+)
- 盗版少(322+)
- 图文清晰(323+)
- 排版满分(191+)
下载评价
- 网友 利***巧:
差评。这个是收费的
- 网友 郗***兰:
网站体验不错
- 网友 冉***兮:
如果满分一百分,我愿意给你99分,剩下一分怕你骄傲
- 网友 相***儿:
你要的这里都能找到哦!!!
- 网友 汪***豪:
太棒了,我想要azw3的都有呀!!!
- 网友 堵***洁:
好用,支持
- 网友 饶***丽:
下载方式特简单,一直点就好了。
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
- 网友 曾***文:
五星好评哦
- 网友 冯***丽:
卡的不行啊
- 网友 陈***秋:
不错,图文清晰,无错版,可以入手。
- 网友 仰***兰:
喜欢!很棒!!超级推荐!
喜欢"Euler"的人也看了
海底两万里 译林出版社 pdf pdb 阿里云 极速 mobi caj kindle 下载
公路水运工程试验检测人员应试题解.桥梁隧道工程 王保群 人民交通出版社股份有限公司 pdf pdb 阿里云 极速 mobi caj kindle 下载
杨绛传 pdf pdb 阿里云 极速 mobi caj kindle 下载
串珠技法入门 pdf pdb 阿里云 极速 mobi caj kindle 下载
狄拉克讲广义相对论 pdf pdb 阿里云 极速 mobi caj kindle 下载
行政职业能力测验·申论真题演练 pdf pdb 阿里云 极速 mobi caj kindle 下载
咨询工程师(投资)2022新版教材配套(4册试题套装) 咨询师历年真题及专家押题试卷:管理+规划+分析与评价+咨询方法 pdf pdb 阿里云 极速 mobi caj kindle 下载
商务日语致辞 即席口译 刁鹂鹏 编著 大连理工大学出版社【正版】 pdf pdb 阿里云 极速 mobi caj kindle 下载
民法典借贷担保法律常识小全书:案例自测实用版 pdf pdb 阿里云 极速 mobi caj kindle 下载
2013-建筑工程管理与实务-全国二级建造师执业资格考试命题趋势权威试卷 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 中药学专业知识(二)——国家执业药师职业资格考试必背采分点 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 女人要读点心理学(升级版) pdf pdb 阿里云 极速 mobi caj kindle 下载
- 【全店300-80】 现货 DISSIDIA FINAL FANTASY NT pdf pdb 阿里云 极速 mobi caj kindle 下载
- 世界经典文学名著博览 经典儿童文学馆 小公主 (上海人美版 青少年版) 【正版保证】 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 4D AR超级涂鸦秀:童话王国 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 只愿金屋不藏娇 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 大国大民 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 决断力-如何在生活与工作中做出更好的选择 (美)希思 等 宝静雅 译 中信出版社【.正版】 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 预售【外图台版】桃园市复兴区部落耆老生命史/庄丽华/国史馆台湾文献馆 pdf pdb 阿里云 极速 mobi caj kindle 下载
- 英汉海洋资源词汇 pdf pdb 阿里云 极速 mobi caj kindle 下载
书籍真实打分
故事情节:5分
人物塑造:3分
主题深度:4分
文字风格:6分
语言运用:9分
文笔流畅:3分
思想传递:4分
知识深度:9分
知识广度:8分
实用性:7分
章节划分:9分
结构布局:7分
新颖与独特:7分
情感共鸣:8分
引人入胜:4分
现实相关:9分
沉浸感:3分
事实准确性:8分
文化贡献:4分